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§0. Introduction

The purpose of this paper is to prove several theorems concerning the finiteness and,
more generally, the scarcity of correspondences on hyperbolic curves in characteristic zero
and to comment on the meaning of these results, especially relative to the analogy with
abelian varieties.

We consider hyperbolic curves over an algebraically closed field k of characteristic zero.
We call two such curves X, Y isogenous if there exists a nonempty scheme C , together
with finite étale morphisms C → X, C → Y . (We refer to such a pair (C → X,C → Y )
as a correspondence from X to Y .) It is easy to see that the relation of isogeny is an
equivalence relation on the set of isomorphism classes of hyperbolic curves over k. Then
the first main result of this paper (cf. Lemma 4.1 and Theorem 4.2 in the text) is the
following:

Theorem A. Let k be an algebraically closed field of characteristic zero. Let X be a
hyperbolic curve over k. Let (g′, r′) be a pair of nonnegative integers satisfying 2g′−2+r′ >
0. Then (up to isomorphism) there are only finitely many hyperbolic curves over k of type
(g′, r′) that are isogenous to X. Moreover, if K is an algebraically closed field extension of
k, then any curve which is isogenous to X over K is defined over k and already isogenous
to X over k.

This result is, technically speaking, a rather trivial consequence of highly nontrivial results
of Margulis and Takeuchi ([Marg], [Take]). Moreover, it is possible that Theorem A has
been known to many experts for some time, but that they simply never bothered to write
it down. As for the author, I was dimly aware of Theorem A for some time, without having
checked the details of the proof of it, until I was asked explicitly about the finiteness stated
in Theorem A by Prof. Frans Oort during my stay at Utrecht University in November 1996.
I was then encouraged by Prof. Oort to write down the details; whence the present paper.

In fact, for general curves, we can say more: Indeed, let (Mg,r)k denote the moduli
stack of r-pointed smooth (proper) curves of genus g. Here, the r marked points are
unordered. (Note that this differs slightly from the usual convention.) The complement
of the divisor of marked points of such a curve will be a hyperbolic curve of type (g, r).
Thus, we shall also refer (by slight abuse of terminology) to (Mg,r)k as the moduli stack
of hyperbolic curves of type (g, r).
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Theorem B. Let k be an algebraically closed field of characteristic zero. Let (g, r) be a
pair of nonnegative integers such that 2g − 2 + r ≥ 3. Let (Mg,r)k be the moduli stack of
(hyperbolic) curves of type (g, r). Then there exists a dense open substack U ⊆ (Mg,r)k with
the following property: If X is a hyperbolic curve over some algebraically closed extension
field K of k that defines a point of U(K), then every correspondence (α : C → X,β : C →
X ′) from X to another hyperbolic curve X ′ is trivial in the sense that there exists a finite
étale morphism γ : X ′ → X such that α = γ ◦ β.

In particular, for such an X, every X ′ isogenous to X can be realized as a finite étale
covering of X.

Theorem B follows from Theorem 5.3 in the text. Moreover, in the exceptional cases ruled
out in the statement of Theorem B, a general curve always admits nontrivial correspon-
dences (see Theorem 5.7 and the Remark following it).

One aspect of the significance of Theorem A is that it shows that although “isogeny”
of hyperbolic curves is a natural analogue of the notion of isogeny for abelian varieties,
the behavior of hyperbolic curves with respect to isogeny is somewhat different from the
behavior of abelian varieties with respect to isogeny. For instance, if one starts with a
(principally polarized) abelian variety, and considers all the principally polarized abelian
varieties isogenous to it – i.e., a so-called “Hecke orbit” – such orbits (far from being finite)
are dense in the moduli stack of principally polarized abelian varieties in characteristic
zero Ag. Indeed, one can see this density in the classical complex topology by using the
uniformization of Ag by Sp2g(R) (modulo a maximal compact subgroup), and the fact
that Sp2g(Q) is dense in Sp2g(R).

One way to describe why such “Hecke orbits” tend to be so big is to regard this
phenomenon as a consequence of the existence of various natural nontrivial correspondences
on Ag, the so-called Hecke correspondences. “Acting on” some initial point with these
correspondences gives a natural way of constructing lots of abelian varieties isogenous to
the abelian variety corresponding to the initial point. Given these circumstances, Theorem
A then leads one to suspect that unlike Ag, the moduli stack Mg,r of hyperbolic curves of
type (g, r) will not have very many correspondences. In fact, one has the following result
(given as Theorem 6.1 in the text):

Theorem C. Suppose that 2g − 2 + r ≥ 3. Then Mg,r is generically a scheme, and
moreover, does not admit any nontrivial automorphisms or correspondences.

Technically speaking, this is a trivial consequence of a theorem of Royden, although I have
not seen Royden’s theorem interpreted in this way – i.e., as implying a statement about
correspondences on Mg,r – elsewhere.

It is intriguing that the exceptional cases ruled out in Theorems B and C (i.e., the
cases where 2g − 2 + r ≤ 2) are precisely the same. That is to say, the existence of
nontrivial correspondences on a general curve appears to be related to irregularities in the
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holomorphic automorphism group of Teichmüller space. Unfortunately, I do not have any
theoretical explanation for this phenomenon at the time of writing.

Finally, another interesting aspect of this circle of ideas is the following: In the case
of Ag, the algebraic Hecke correspondences may be constructed p-adically using the Serre-
Tate parameters, or, equivalently, by means of certain canonical Frobenius lifting over the
ordinary locus of the p-adic completion of Ag. (This Frobenius lifting is the Frobenius
lifting given by assigning to an abelian variety with ordinary reduction modulo p, the
quotient of this abelian variety by the multiplicative portion of the kernel of multiplication
by p. For g = 1, this Frobenius lifting is known as the “Deligne-Tate map.”) Put another
way, although this canonical Frobenius lifting is essentially p-adic in nature, and cannot
be algebraized, by combining it with its transpose, we obtain a correspondence which can
be algebraized – namely, into a Hecke correspondence. On the other hand, in the case of
Mg,r, there does exist a direct analogue of the canonical Frobenius lifting on (the ordinary
locus of the p-adic completion of) Ag – namely, the theory of [Mzk1], [Mzk2], [Mzk3].
Thus, it is natural to ask whether the canonical modular Frobenius lifting on Mg,r can
be algebraized in a similar fashion by forming a correspondence from the union of the
Frobenius lifting and its transpose. Theorem C tells us, however, that the answer is no.

Thus, although Theorems A, B, and C are technically just concatenations of known
results, their significance in the context of the theory of [Mzk1], [Mzk2], [Mzk3], appears
not to have been noticed by previous authors.

Acknowledgements: I would like to thank Prof. Frans Oort for proposing the finiteness
question answered in Theorem A to me during my stay at Utrecht University in November
1996, and for making various useful comments concerning both the substance and the
expository style of this paper. Also, I would like to thank the University for its generosity
and hospitality during my stay, and the Nederlandse Organizatie voor Wetenschappelijk
Onderzoek for financial support. Finally, I would like to thank Prof. Y. Ihara for informing
me of the paper [Take] in the Spring of 1995.

§1. Basic Definitions

Let k be an algebraically closed field of characteristic zero. Let X be a hyperbolic curve
over k. By this, we mean that X is an open subset of a proper, smooth, connected, one-
dimensional k-scheme X such that if g is the genus of X (i.e., the dimension of H1(X,OX)
over k), and r is the number of points in X − X, then we have 2g − 2 + r > 0. We shall
refer to (g, r) as the type of X.

Suppose that Y and Z are also hyperbolic curves over k. Then we make the following

Definition 1.1. We shall refer to as a correspondence from X to Y any (ordered) pair
of finite, étale morphisms α : C → X, β : C → Y , where we assume that C is nonempty.
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Thus, C will necessarily be a finite disjoint union of hyperbolic curves over k. Note that
we do not assume that C is connected.

Definition 1.2. We shall refer to a correspondence (α : C → X,β : C → Y ) from X to
Y as trivial if there exists a finite étale morphism γ : Y → X such that α = γ ◦ β.

Definition 1.3. Given a correspondence (α, β) from X to Y , we shall refer to as the
transpose correspondence to (α, β) the correspondence (from Y to X) given by the pair
(β,α).

Definition 1.4. Let (α1 : C1 → X,β1 : C1 → Y ) (respectively, (α2 : C2 → Y, β2 : C2 →
Z)) be a correspondence from X to Y (respectively, Y to Z). Then we shall refer to as
the composite of these two correspondences the correspondence given by the following pair
of morphisms: the first morphism C1 ×Y C2 → X is given by composing the projection to
C1 with α1; the second morphism C1 ×Y C2 → Z is given by composing the projection to
C2 with β2. Thus, the composite correspondence is a correspondence from X to Z.

As the terminology “from X to Y ” implies, we want to regard correspondences from
X to Y as a sort of hyperbolic analogue of isogenies between abelian varieties.

Definition 1.5. We shall call two hyperbolic curves X and Y over k isogenous if there
exists a corresondence from X to Y .

Note that by taking transposes and composites of correspondences, one sees immediately
that the relation of isogeny is an equivalence relation.

§2. Review of Results of Margulis and Takeuchi

In this Section, we assume that k is C, the field of complex numbers. Let X be
a hyperbolic curve over k. Let X be the Riemann surface associated to X. Thus, the
underlying set of X is X(C). Let X̃ be the universal covering space of X . Thus, X̃ is a
Riemann surface. From elementary complex analysis, one knows that X̃ is holomorphi-
cally isomorphic to H def= {z ∈ C| Im(z) > 0}. Let us choose a holomorphic identification
of X̃ with H. Recall also from elementary complex analysis that the group of holomor-
phic automorphisms of H may be identified with PSL2(R)0 (acting via linear fractional
transformations). (Here, the superscripted “0” denotes the connected component of the
identity.) Let us write Π for the (topological) fundamental group of X (for some choice
of base-point). Then the action of Π on X̃ by deck transformations defines an injection
Π ↪→ Aut(H) = PSL2(R)0. Let us denote the image of this injection by Γ ⊆ PSL2(R)0.
In the following, we will always think of Γ as a subgroup of PSL2(R)0.
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Next, if Γ1 and Γ2 are two subgroups of PSL2(R)0, let us write Γ1 ∼ Γ2 (read “Γ1 is
commensurable with Γ2”) if Γ1

⋂
Γ2 has finite index in both Γ1 and Γ2. Also, let us write

Comm(Γ) def= {γ ∈ PSL2(R)0| (γ · Γ · γ−1) ∼ Γ}

Note that Γ ⊆ Comm(Γ). Then we make the following

Definition 2.1. We shall say that X, X , or Γ has infinitely many correspondences if Γ
has infinite index in Comm(Γ).

By a theorem of [Marg] (see Theorem 2.5 below), X is “arithmetic” if and only if it has
infinitely many correspondences. We would like to review this result below, but before we
can do this, we need to review what it means for X to be “arithmetic.” Unfortunately, for
hyperbolic curves, there (at least) two different ways to define arithmeticity. In this paper,
we will need to use both definitions, so in the following, we shall review both definitions,
and then show that they are equivalent.

We begin with the definition of [Marg], Chapter IX, §1.5: To do this, first we need to
recall some basic terminology. If F is a field of characteristic zero, and G is an algebraic
group over F , then we shall say that G is almost F -simple if any proper, closed, normal
algebraic subgroup of G defined over F is finite. Also, we shall denote by (PSL2)R the
algebraic group “PSL2” over R.

Definition 2.2. We shall call X, X , or Γ Margulis-arithmetic if there exists a connected
non-commutative almost Q-simple algebraic group G over Q, together with a surjection τ :
GR

def= G⊗QR → (PSL2)R of algebraic groups over R such that the Lie group (Ker τ )(R)
is compact, and the subgroups τ (G(Z)) and Γ (of PSL2(R)0) are commensurable. (Here,
by the notation G(Z), we mean the Z-valued points of GLN that lie inside G for some
embedding of Q-algebraic groups G ↪→ (GLN)Q. Thus, properly speaking, “G(Z)” is an
equivalence class of commensurable subgroups of G(Q) (see [Marg], p. 60, Lemma 3.1.1
(iv) and the following discussion for more details).)

Next, we review the definition of arithmeticity given in [Take]:

Definition 2.3. We shall call X, X , or Γ Shimura-arithmetic if the following data exist:

(1) a totally real algebraic number field F ;

(2) a quaternion algebra A over F which is trivial at one of the infinite
places of F and nontrivial at all the other infinite places;

(3) a trivialization of A at the infinite place of F at which A is trivial; this
trivialization will be used to regard A as a subalgebra of M2(R);
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(4) an order OA ⊆ A such that the intersection of OA ⊆ A ⊆ M2(R) with
SL2(R) ⊆ M2(R) has image in PSL2(R)0 commensurable with Γ.

(The reason for this terminology is that the situation described in this definition (used in
[Take]) was studied extensively by Shimura in, for instance, [Shi], Chapter 8.)

The following result is well-known, but I don’t know of an adequate reference:

Proposition 2.4. The Riemann surface X is Margulis-arithmetic if and only if it is
Shimura-arithmetic.

Proof. That Shimura-arithmeticity implies Margulis-arithmeticity is clear. Thus, let us
assume that Γ is Margulis-arithmetic, and prove that it is also Shimura-arithmetic. Let
us suppose that we have a G and a τ : GR → (PSL2)R as in Definition 2.2. First, let
us observe that the fact that G is almost Q-simple implies that GQ is the almost direct
product of its almost simple factors Hi ⊆ GQ (where i = 1, . . . , n) – see, e.g., [Marg], p.
21. Moreover, since the almost simple factors are canonical, it follows that the action of
Gal(Q/Q) on GQ (given by the fact that GQ is defined over G) permutes these almost
simple factors. Since G is almost Q-simple, it even follows that Gal(Q/Q) acts transitively
on the almost simple factors of GQ. Thus, the stabilizer of, for instance, H1 in Gal(Q/Q)
is Gal(Q/F ), for some finite extension F of Q. Moreover, the action of Gal(Q/F ) on H1

(which is an algebraic group over Q) defines an F -rational structure on H1, i.e., there
is some F -algebraic group HF such that H1 = (HF ) ⊗F Q. In fact, it follows from the
definitions that the other Hi’s are just the Galois conjugates of H1, hence that the inclusion
(HF )Q = H1 ↪→ GQ induces an isogeny of G′ def= RestF/Q(HF ) (where “RestF/Q” denotes
“Weil restriction of scalars from F to Q”) onto G.

Next, we would like to observe that Lie(HF )C is isomorphic to sl2(C). To see this, we
argue as follows. First, note that τ ⊗RC induces a surjection of Lie algebras from Lie(GC)
onto sl2(C). Since sl2(C) is a simple Lie algebra, it thus follows that at least one of the
Lie(Hi)C’s is isomorphic to sl2(C). But this implies that Lie(HF )C ∼= sl2(C), as desired.

Now let H∗
F be the quotient of HF by its center. Then it follows from the elementary

theory of algebraic groups, plus what we did in the preceding paragraph, that H∗
F is some

twisted from of (PGL2)Q over F . In other words, H∗
F defines a class in the non-abelian

Galois cohomology set H1(F,PGL2), hence an element of the Brauer group of F of order
two. Put another way, there exists a quaternion algebra A over F such that H∗

F may be
identified with (the F -algebraic group corresponding to) A×/F×.

Next, we would like to show that F is totally real, and that A is the sort of quaternion
algebra that appears in Definition 2.3. To do this, we consider G(R). The above analysis of
G′ and H∗

F shows that for each complex infinite place of F , there appears in GR an almost
R-simple factor which is isogenous to RestC/R(PGL2)C. If τ were trivial on this factor,
then (Ker τ )(R) would contain SL2(C) or PSL2(C), hence would be noncompact. Thus,
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we obtain that τ is nontrivial on such a factor. On the other hand, this implies that there
exists a nontrivial morphism PGL2(C) → PGL2(R)0 of real Lie groups. Moreover, since
PGL2(R)0 has an R-simple Lie algebra, it follows that such a morphism is surjective. But
since the kernel of this morphism is compact and of real dimension three, this implies that
the maximal compact subgroup of PGL2(C) is normal, which is absurd. This contradiction
implies that F has no complex places.

Similarly, if the quaternion algebra A were trivial at two real places of F , then we
would get a surjection PGL2(R)0 × PGL2(R)0 → PGL2(R)0 (of real Lie groups) with
compact kernel. But since the kernel of such a surjection is necessarily isomorphic to
PGL2(R)0 , this is absurd. Thus, we see that A is as in Definition 2.3. Now one sees
easily that τ defines a trivialization (datum (3) of Definition 2.3), and that there exist
representatives of the equivalence class “G(Z)” that arise in the fashion described in (4)
of Definition 2.3. This shows that Γ is Shimura-arithmetic, thus completing the proof of
the Proposition. ©

In the future, we shall refer to X, X , or Γ as arithmetic if it is either Margulis-arithmetic
or Shimura-arithmetic (since we now know that these two notions of arithmeticity are
equivalent).

Now we are ready to state the main results that we wanted to review in this Section:

Theorem 2.5. ([Marg], p. 337, Theorem 27; p. 60, Lemma 3.1.1, (v)) The hyperbolic
Riemann surface X is arithmetic if and only if it has infinitely many correspondences (in
the sense of Definition 2.1).

Theorem 2.6. ([Take], Theorem 2.1) There are only finitely many arithmetic X over C
of a given type (g, r).

The first main result of this paper will essentially be a consequence of the above two results,
plus various elementary manipulations, to be discussed in the following Section.

§3. The Non-arithmetic Case

We maintain the notation of Section 2. Moreover, in this Section, we assume that
X is not arithmetic. Thus, we have Γ ⊆ Comm(Γ) ⊆ PSL2(R)0, and Γ is of finite index
in Comm(Γ). Now we would like to form the quotient of H by Comm(Γ) in the sense
of stacks. (We refer to Chapter 1, §4 of [FC] for generalities on stacks.) Let us denote
this quotient by Y. Note that since Γ has finite index in Comm(Γ), it follows that we get
a finite étale morphism X → Y. Moreover, this finite étale morphism gives the analytic
stack Y an algebraic structure, so we obtain an algebraic stack Y together with a finite
étale morphism X → Y corresponding to X → Y.
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Definition 3.1. Suppose that X is not arithmetic. Then we shall refer to Y (respectively,
Y) as the hyperbolic core of X (respectively, X ).

Next, we would like to suppose that we have been given a correspondence (α :
C → X,β : C → Z) from X to some other hyperbolic curve Z; we assume here, for
simplicity, that C is connected. This gives rise to corresponding analytic morphisms
C → X , C → Z. Moreover, these two morphisms induce isomorphisms between the
respective universal covering spaces. Also, we get various groups of deck transformations
ΓX ,ΓC ,ΓZ ⊆ Aut(H) = PSL2(R)0, together with various inclusion relations: ΓC ⊆ ΓX ;
ΓC ⊆ ΓZ . (Note that the object that we have been referring to up till now by the notation
“Γ” will now be referred to as “ΓX .”) Now we have the following result:

Proposition 3.2. We have ΓZ ⊆ Comm(ΓX ).

Proof. First observe that for the purpose of proving this Proposition, we may assume
that C is Galois over Z. Thus, ΓC is normal (and of finite index) in ΓZ . Now let γ ∈ ΓZ .
Then ΓX

⋂
(γ · ΓX · γ−1) contains ΓC

⋂
(γ · ΓC · γ−1) = ΓC . In particular, it follows that

ΓX
⋂

(γ · ΓX · γ−1) is of finite index in ΓX (and hence also – by replacing γ by γ−1 – of
finite index in γ · ΓX · γ−1). This completes the proof of the Proposition. ©

Interpreting this Proposition in terms of Riemann surfaces, we see that there exists a
unique finite étale morphism Z → Y such that the following diagram commutes:

C −→ Z⏐⏐�
⏐⏐�

X −→ Y

(Here, the upper horizontal and left-hand vertical morphisms are the analytic morphisms
associated to β and α, respectively, and the lower horizontal morphism is the morphism
that appeared in the construction of the hyperbolic core of X .) Moreover, this diagram
can be algebraized. Thus, in particular, we obtain an (algebraic) finite étale morphism
Z → Y .

Write (gZ , rZ) for the type of Z. Observe from the Riemann-Hurwitz formula that
there exists a positive rational number eY ∈ Q such that if T is any hyperbolic curve, of
type (gT , rT ), and f : T → Y is finite étale of degree d, then 2gT − 2 + rT = eY · d. Now
we are ready to prove the following result:

Theorem 3.3. Suppose that X is not arithmetic. Fix a pair of nonnegative integers
(g′, r′) such that 2g′− 2+ r′ > 0. Then there exist (up to isomorphism) only finitely many
hyperbolic curves Z of type (g′, r′) that are isogenous to Z.
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Proof. Indeed, by the above discussion, we see that we get (for such Z) a finite étale
morphism Z → Y . Moreover, the degree of this morphism (and hence also of the corre-
sponding analytic morphism Z → Y) is bounded by a number that depends only on g′, r′,
and eY (i.e., X). On the other hand, note that since Comm(ΓX ) has a finite index sub-
group which is finitely generated – namely, ΓX – it follows that Comm(ΓX ) is itself finitely
generated. Moreover, since one may think of Comm(ΓX ) as the fundamental group of Y,
the fact that this group is finitely generated implies that there are (up to isomorphism)
only finitely many finite étale coverings of Y of degree less than some fixed number. This
observation completes the proof of the Theorem. ©

Remark. Let X be nonarithmetic. Then let us observe that if the automorphism group
G

def= Aut(X) of X is nontrivial, then X is not equal to its hyperbolic core. Indeed, since
it is clear that the morphism X → Y that defines Y as the hyperbolic core of X is natural,
it follows that this morphism is equivariant with respect to the given action of G on X
and the trivial action of G on Y . Thus, X → Y necessarily factors through the quotient
(in the sense of stacks) X → X/G, which implies that X → Y has degree > 1, as claimed.

On the other hand, the converse to this statement, i.e., that “if the degree of X → Y
is > 1, then X admits nontrivial automorphisms,” is false in general. Indeed, one can
construct such an X as follows: Let X ′ be a nonarithmetic affine hyperbolic curve which is
equal to its hyperbolic core (such X ′ exist by Theorem 5.3 below). Then the fundamental
group of X ′ will be a nonabelian finitely generated free group, so it is easy to see that it
admits a finite étale covering X → X ′ (where X is connected, and X → X ′ has degree
> 1) such that there are no intermediate Galois coverings X → X ′′ (except X = X). (For
instance, take X → X ′ to be non-Galois of prime degree.) Then I claim that X → X ′

exhibits X ′ as the hyperbolic core of X. Indeed, if X → Y is the morphism defining Y as
the hyperbolic core of X, then X → Y must factor through X → X ′; but this gives us a
finite étale morphism X ′ → Y which must be an isomorphism (cf. the discussion preceding
Theorem 3.3) since X ′ is equal to its own hyperbolic core. This proves the claim. Thus,
X has no automorphisms (for if it did, then by the argument of the preceding paragraph,
X → X ′ would admit a nontrivial intermediate Galois covering X → X ′′), but is not equal
to its hyperbolic core.

§4. The Main Theorem

Now we return to the situation where k is any algebraically closed field of characteristic
zero. Let X be a hyperbolic curve over k. Let K be an algebraically closed field of
characteristic zero that contains k. Write XK for X ⊗k K.

Lemma 4.1. Suppose that XK is isogenous to some hyperbolic curve ZK over K.
Then ZK is the result of base-extending some hyperbolic curve Z over k from k to K, and,
moreover, any correspondence from XK to ZK descends to a correspondence from X to Z.
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Proof. Indeed, since it only takes “finitely many equations” to define a curve or a cor-
respondence, it follows that any αK : CK → XK , βK : CK → ZK descends to a pair of
finite étale morphisms αR : CR → XR, βR : CR → ZR of curves over R, where R is a
finitely generated k-subalgebra of K. Now observe that since αR is finite étale, and the
étale site of a scheme is rigid with respect to deformations, it follows that αR descends
to a finite étale morphism α : C → X. Moreover, if we restrict βR to a closed point s of
Spec(R), the tangent space to the space of deformations of βs : Cs = C → Zs is given
by the kernel of the pull-back map H1(Zs, τZs) → H1(C, τC = τZs |C) (where “τ” denotes
“tangent bundle”). But I claim that this pull-back map is injective: Indeed, this follows
from the existence of the trace map which gives a one-sided inverse of the pull-back map.
(Note that here we use the fact that the degree of βs is invertible in k – a consequence of
the assumption that k is of characteristic zero.) Thus, there are no nontrivial deformations
of βs, so again we conclude that βR = βs ⊗k R. This completes the proof of the Lemma.
©

Now we are ready to prove the first main result of the paper:

Theorem 4.2. Let k be an algebraically closed field of characteristic zero. Let X be a
hyperbolic curve over k. Let (g′, r′) be a pair of nonnegative integers satisfying 2g′−2+r′ >
0. Then (up to isomorphism) there are only finitely many hyperbolic curves over k of type
(g′, r′) that are isogenous to X.

Proof. First, observe that given any finite set of curves isogenous to X, there exists a
subfield k′ of k which is finitely generated over Q over which all the curves of that finite
set, together with X itself, are defined. Thus, it suffices to show that the number of curves
of type (g′, r′) that are isogenous to X over k′ (i.e., the algebraic closure of k′) is bounded
by a number independent of the choice of subfield k′. On the other hand, since there
always exists an embedding k′ ⊆ C, the uniform boundedness statement of the preceding
sentence will be proven if we can prove the finiteness statement of the Theorem in the case
k = C. Thus, we may assume k = C. Then either X is arithmetic or it is not arithmetic.
If X is arithmetic, it follows easily from the definitions that any curve isogenous to X will
also be arithmetic. Thus, in this case, the Theorem follows from Theorem 2.6. If X is not
arithmetic, then the Theorem is simply Theorem 3.3. ©

§5. Isogenies of General Curves

In this Section, we show that (if one rules out certain exceptional cases, then) the
only curves isogenous to a general hyperbolic curve are the finite étale coverings of the
curve. This essentially amounts to a straightforward elementary calculation involving the
Riemann-Hurwitz formula, but nevertheless we give full details below. We remark that
although the statement proven below (Theorem 5.3) that a general curve (of all but a few

10



exceptional types) is equal to its hyperbolic core is strictly stronger than the statement
that such a curve has no nontrivial automorphisms (cf. the Remark at the end of §3), this
calculation involving the Riemann-Hurwitz formula is exactly the same as in the proof that
such a curve has no nontrivial automorphisms. Thus, in principle, this calculation is “well-
known.” Nevertheless, I have chosen to give full details below partly for the convenience
of the reader, and partly because of the following set of circumstances:

In the case r = 0, the calculation is much simpler and is contained, for
instance, in [Baily]. Moreover, the result on automorphisms of a general
curve for r = 0 immediately implies the result on automorphisms of a
general curve for r > 0. Thus, if one is only interested in automorphisms,
there is no need to carry out this calculation in the more difficult case
r > 0. On the other hand, the result that a general curve is equal to its
hyperbolic core when r = 0 does not formally imply the corresponding
result when r > 0. Thus, to obtain the result on the hyperbolic core,
one must carry out this calculation in complete generality (i.e., allowing
that r might be nonzero). Since I do not know of a reference that gives
this calculation in this generality, I decided to give full details here.

Lemma 5.1. Let k be algebraically closed of characteristic zero. Suppose that k is a
subfield of C. Let X be a hyperbolic curve over k. Suppose that XC

def= X ⊗k C is not
arithmetic. Then the morphism XC → YC appearing in the discussion of the hyperbolic
core of XC (see Definition 3.1) descends to some morphism X → Y over k. Moreover,
X → Y has the universal property that any correspondence (C → X,C → Z) over k, fits
uniquely into a commutative diagram:

C −→ Z⏐⏐�
⏐⏐�

X −→ Y

Finally, the morphism X → Y is independent (up to canonical isomorphism) of the em-
bedding of k into C.

Proof. Observe that (from the definition of XC → YC) there exists a finite étale Galois
covering X ′

C → XC such that X ′
C → YC is Galois. Since étale coverings are rigid, X ′

C →
XC descends to some X ′ → X over k. Moreover, since automorphisms of hyperbolic curves
are rigid, AutC(X′

C) = Autk(X′). Thus, G
def= Gal(X ′

C/YC) acts on X ′, so that we may

form the quotient (in the sense of stacks) X ′ → Y
def= X ′′/G. Moreover, this quotient

clearly factors through X, so we obtain a morphism X → Y that descends XC → YC,
as desired. The universal property follows immediately by descending (cf. the argument
of Lemma 4.1) from C to k the corresponding analytic universal property discussed in
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the paragraph following Proposition 3.2. The fact that X → Y does not depend on the
embedding of k into C follows from the existence/uniqueness assertion inherent in the
statement of the universal property. ©

Definition 5.2. Suppose that we are in the situation of Lemma 5.1. Then we shall refer
to the stack Y constructed in Lemma 5.1 as the hyperbolic core Y of X.

Notation. Let Y be a smooth, one-dimensional algebraic stack over a field k. Suppose
further that Y is generically a scheme. Then we shall use the following notation for objects
related to Y : Let us write Y c for the “course moduli space” associated to Y (see, e.g.,
[FC], Chapter I, §4.10, for a discussion of the course moduli space associated to a stack).
Thus, Y c is a smooth, connected, one-dimensional scheme over k, and we have a natural
morphism Y → Y c. Let us write gY for the genus of the compactification of Y c, and rY

for the number of points that need to be added to Y c to compactify it. Let us write ΣY

for the set of points of Y c over which Y → Y c is not étale. For σ ∈ ΣY , let iσ be the
ramification index of Y → Y c at σ. Thus, iσ will always be an integer ≥ 2. Let jσ

def= iσ−1
iσ

.
Thus, jσ is a rational number ≥ 1

2
and < 1. We shall refer to the data (gY ; rY ; {iσ}σ∈ΣY )

as the type of the stack Y . Finally, we define

eY
def= 2gY − 2 + rY +

∑
σ∈ΣY

jσ

Thus, one may think of eY as the Euler characteristic of Y .

Theorem 5.3. Let k be algebraically closed of characteristic zero. Suppose that k is a
subfield of C. Fix nonnegative integers g and r such that 2g− 2+ r ≥ 3. Then there exists
an open dense substack U ⊆ (Mg,r)k (where (Mg,r)k is the moduli stack of (hyperbolic)
curves of type (g, r) over k) with the following property: If X is a hyperbolic curve over
some extension algebraically closed field K of k corresponding to a point ∈ U(K), then
the hyperbolic core of X is equal to X. Thus, in particular, (if K is algebraically closed,
then) for such an X, every hyperbolic curve isogenous to X can be realized as a finite étale
covering of X.

Remark. The exceptional cases ruled out by the assumption that 2g − 2 + r ≥ 3 are
precisely the cases where (g, r) is equal to (0, 3), (0, 4), (1, 1), (1, 2), or (2, 0).

Proof. It suffices to find some U as in the statement of the Theorem with the property
that for X corresponding to a K-valued point of U (where K is an algebraically closed
extension field of k), the hyperbolic core (Definition 3.1) of X is equal to X itself. To do
this, let us consider the case of an X which is non-arithmetic and whose natural morphism
X → Y to its hyperbolic core Y has degree d > 1. From the Riemann-Hurwitz formula,
we have that:
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2g − 2 + r = d(2gY − 2 + rY +
∑

σ∈ΣY

jσ)

Since 2g − 2 + r > 0, it follows that the expression in parentheses, which is simply eY , is
also > 0. Now we have the following (well-known):

Lemma 5.4. The expression in parentheses eY is bounded below by an absolute positive
constant, independent of X, g, and r.

Proof of Lemma 5.4. This is a simple combinatorial exercise. If 2gY − 2 + rY ≥ 1, then
eY ≥ 1. If 2g−2+ rY = 0, then eY ≥ 1

2 . If 2gY −2+ rY = −1, then either ΣY has at least
three elements, in which case eY ≥ 1

2 , or ΣY has precisely two elements, in which case
eY ≥ 1

6 . If 2gY − 2 + rY = −2 (so gY = rY = 0), then we have the following possibilities:
If ΣY has at least five elements, then eY ≥ 1

2 . If ΣY has precisely four elements, then
eY ≥ 1

6 . Otherwise, ΣY has precisely three elements. In this last case, observe that: it is
never the case that two iσ’s are = 2. This observation implies that if the largest iσ is ≥ 7,
then eY ≥ 1

6
− 1

7
> 0. But there are only finitely many possibilities for ΣY for which the

largest iσ is ≤ 6. This completes the proof. ©

Lemma 5.5. If g and r are fixed, then there is only a finite number of possibilities for
d, gY , rY , and ΣY .

Proof of Lemma 5.5. Since 2g−2+ r = d · eY , and (by Lemma 5.4) eY is bounded below
by positive constant, it follows that d is bounded above. Since d is a positive integer, it
thus follows that there is only a finite number of possibilities for d. Thus, there is only a
finite number of possibilities for eY . Since 2gY − 2 + rY + 1

2 |ΣY | ≤ eY (where |ΣY | is the
cardinality of ΣY ), it thus follows that there is only a finite number of possibilities for gY ,
rY , and |ΣY |. But since each iσ ≤ d, it thus follows that there is only a finite number of
possibilities for ΣY . This completes the proof. ©

Lemma 5.6. The locus (inside (Mg,r)k) of nonarithmetic curves that are not equal to
their own hyperbolic cores is constructible (in (Mg,r)k).

Proof of Lemma 5.6. Indeed, for each possible d, gY , rY , ΣY , one considers the moduli
stack N of smooth, one-dimensional hyperbolic stacks Y with invariants gY , rY , ΣY . (Note
– for later use – that the dimension of this moduli stack is equal to 3gY − 3 + rY + |ΣY |.)
Then the moduli stack N ′ of pairs consisting of such Y together with a finite étale covering
X → Y of degree d (where X is of type (g, r)) forms a finite étale covering N ′ → N over
N . Moreover, the morphism that assigns to such a covering X → Y the curve X defines a
morphism N ′ → (Mg,r)k. Thus, the locus in question is the image of a finite (by Lemma
5.5) number of such N ′ → (Mg,r)k, hence is constructible. ©
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Thus, it follows from the proof of Lemma 5.6 that in order to prove Theorem 5.3, it
suffices to prove that for all possible gY , rY , and ΣY , we have 3g−3+r > 3gY −3+rY +|ΣY |
(at least under the hypotheses placed on (g, r) in the statement of the Theorem). We
proceed to do this in the paragraphs that follow:

First, let us consider the case gY ≥ 1. In this case, if we multiply the formula
2g − 2 + r = d · eY by 3

2 and then subtract 1
2r, we obtain:

3g − 3 + r = d{3(gY − 1) +
3
2
rY +

3
2

∑
σ∈ΣY

jσ} −
1
2
r

= 3d(gY − 1) +
3d

2
(

∑
σ∈ΣY

jσ) + d · rY + (
1
2
d · rY − 1

2
r)

≥ 3(gY − 1) +
3d

2
(

∑
σ∈ΣY

jσ) + d · rY

≥ 3gY − 3 +
3 · 2
2

· 1
2
· |ΣY | + d · rY

≥ 3gY − 3 + rY + |ΣY |

(Here we use that d · rY ≥ r, d ≥ 2, jσ ≥ 1
2 .) Moreover, if gY ≥ 2, then the first “≥”

may be replaced with a “>,” while if gY = 1 (so that rY + |ΣY | ≥ 1), then the third “≥”
may be replaced with a “>.” Thus, either way, we obtain that as long as gY ≥ 1, we have
3g − 3 + r > 3gY − 3 + rY + |ΣY |, as desired.

Now, we consider the case gY = 0. First of all, just as above, we obtain that 3g−3+r ≥
d(−3+ rY + 3

2

∑
σ jσ). Since we wish to show that 3g− 3+ r > −3 + rY + |ΣY |, it suffices

to show that the quantity

QY
def= (d − 1)(rY − 3) + (

3d

4
− 1)|ΣY |

is positive. (Here we use that jσ ≥ 1
2 .) Next, let us observe that if |ΣY | ≥ 7, then

QY ≥ −3d + 3 + 21d
4 − 7 = 9d

4 − 4 ≥ 1
2 > 0. Thus, it suffices to consider the case |ΣY | ≤ 6.

Note that at this point, we still have not used the assumption that 2g − 2 + r ≥ 3.

Now note that if r = 0 and the desired inequality is false, then rY = 0, so 3g − 3 ≤
−3 + rY + |ΣY | ≤ 3, so (g, r) = (2, 0), but this case was ruled out in the hypothesis of the
Theorem. This completes the proof of the Theorem when r = 0.

Thus, for the rest of the proof, we assume that r �= 0. Then rY �= 0. Now if |ΣY | ≥ 5,
then QY ≥ −2d+2+ 15d

4 −5 ≥ 1
2 > 0. Thus, we obtain that |ΣY | ≤ 4. Now if rY ≥ 3, and

the desired inequality is false, then we obtain (under the assumption that (g, r) �= (0, 3))
that 0 < 3g−3+ r ≤ (rY −3)+ |ΣY |, so it follows immediately that QY > 0; thus, rY ≤ 2.
Thus, in summary, we have that |ΣY | ≤ 4, rY ≤ 2. Moreover, if |ΣY | ∈ {3, 4} and rY = 2,
then QY ≥ 1− d+ 9d

4 − 3 = 5d
4 − 2 ≥ 1

2 > 0. Thus, in summary we see that |ΣY |+ rY ≤ 5,

14



(|ΣY |, rY ) �= (3, 2). Note that at this point (in our treatment of the case r �= 0), the only
assumption that we have used concerning (g, r) is that it is not equal to (0, 3).

Now we invoke the assumption that 2g − 2 + r ≥ 3. If the desired inequality is false,
then 3g − 3 + r ≤ −3 + rY + |ΣY | ≤ 2, so the only (g, r) that is still possible (and which
is not ruled out in the hypothesis of the Theorem) is (g, r) = (0, 5). Thus, for the rest of
the proof, we assume that (g, r) = (0, 5).

It remains only to examine the case |ΣY | = 4, rY = 1. In this case, QY = d − 2, so
QY ≤ 0 implies d = 2. Thus, 5 = r ≤ d · rY = 2, which is absurd. This completes the
proof of Theorem 5.3. ©

Remark. It is not difficult to check that in the exceptional cases (i.e., the cases where
2g − 2 + r ≤ 2) ruled out in Theorem 5.3, the hyperbolic core of a general curve is not
equal to the core itself. Indeed, we have the following:

Theorem 5.7. For a “general” (in the same sense as in the statement of Theorem 5.3)
hyperbolic curve X of type (g, r), the canonical morphism X → Y to the hyperbolic core of
X may be described as follows: gY = 0 and

(1) If (g, r) = (0, 4), then X → Y has degree 4, rY = 1, |ΣY | = 3, all the
iσ are 2, and the ramification index at the point at infinity of Y is 1.

(2) If (g, r) = (1, 1), then X → Y has degree 2, rY = 1, |ΣY | = 3, all the
iσ are 2, and the ramification index at the point at infinity of Y is 2.

(3) If (g, r) = (1, 2), then X → Y has degree 2, rY = 1, |ΣY | = 4, all the
iσ are 2, and the ramification index at the point at infinity of Y is 1.

(4) If (g, r) = (2, 0), then X → Y has degree 2, rY = 0, |ΣY | = 6, and all
the iσ are 2.

Finally, if (g, r) = (0, 3), then X is arithmetic, so the hyperbolic core is not defined.

Proof. We continue computing with the notation at the end of the proof of Theorem
5.3. Thus, first of all, we have that 3g − 3 + r = rY + |ΣY | − 3. We begin with the case
(g, r) = (2, 0). In this case, rY = 0 and |ΣY | = 6. Thus, QY = 3

2d − 3, so QY ≤ 0 implies
d = 2. Since a general proper curve of genus 2 is well-known to be hyperelliptic, this
completes the case of (g, r) = (2, 0).

Thus, it remains to consider those (g, r) for which r �= 0. Let us also assume (until the
second to last paragraph of the proof) that (g, r) �= (0, 3). Then it follows from the proof
of Theorem 5.3 that gY = 0 and rY is either 1 or 2. Moreover, if rY = 2, then |ΣY | = 2,
while if rY = 1, then |ΣY | is 3 or 4.
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If rY = 2 and |ΣY | = 2, then QY = 1
2d − 1, so QY ≤ 0 implies d = 2. Thus,

2g − 2 + r = d · eY = 2, while 3g − 3 + r = rY + |ΣY | − 3 = 1, i.e., (g, r) = (0, 4). We
shall see later that in fact, this case cannot arise under the assumption that X → Y is the
canonical map defining Y as the hyperbolic core of X.

From now on, we assume that rY = 1. If |ΣY | = 4, then QY = d − 2, so QY ≤ 0
implies d = 2. Thus, 2g − 2 + r = d · eY = 2, while 3g − 3 + r = rY + |ΣY | − 3 = 2, i.e.,
(g, r) = (1, 2).

If |ΣY | = 3, then QY = d
4 − 1, so QY ≤ 0 implies d ∈ {2, 3, 4}. Since 3g − 3 + r =

rY + |ΣY | − 3 = 1, it follows that 2g − 2+ r is 1 or 2. I claim that d �= 3. Indeed, if d were
3, then all the iσ would be = 3, so we would get 2g − 2 + r = d · eY = 3, which is absurd.
This proves the claim. Now observe that all the iσ are equal to 2. Indeed, since the only
possibilities for each iσ are 2 and 4, if there were even one iσ �= 2, then we would have
d = 4, eY ≥ 3

4
, so 3 ≤ d · eY = 2g− 2+ r ∈ {1, 2}, which is absurd. Thus, all the iσ = 2, as

claimed. Moreover, eY = 1
2 , and d = 2(2g − 2 + r). In other words, either (g, r) = (0, 4),

in which case d = 4, or (g, r) = (1, 1), in which case d = 2.

Next, we pause to remark that it is not difficult to show that a general curve of type
(0, 4) can actually be obtained as a degree four covering of a stack Y with gY = 0, rY = 1,
|ΣY | = 3, and all the iσ = 2. Indeed, consider the covering of P1 minus four points
defined by the permutations (12)(34); (13)(24); (14)(23); id. (Note that the product of
these permutations is the identity.) Here we think of the points corresponding to the first
three permutations as the points at which Y is not a scheme, and the point corresponding
to the last permutation as the point at infinity of Y . Thus, the existence of such a covering
shows that the case rY = 2, |ΣY | = 2 (where the degree is necessarily 2, which is < 4)
could not arise under the assumption that the map X → Y is the canonical map defining
Y as the hyperbolic core of X.

The only remaining case to consider is the case (g, r) = (0, 3). In this case, it is well
known that X is arithmetic. (In fact, it appears as a finite étale covering of the moduli
stack of elliptic curves.) Thus, the hyperbolic core is not defined.

Finally, we observe that it is easy to see that morphisms X → Y as stated in the
Theorem always exist. Thus, the above case analysis shows that such morphisms are
necessarily the hyperbolic cores in each of the respective cases. This completes the proof
of the Theorem. ©

Remark. It is not difficult to see that all the exceptional cases listed in Theorem 5.7 have the
following property: A general curve X admits a correspondence (α : Z → X,β : Z → X ′)
which is nontrivial in the sense that there does not exist a finite étale γ : X ′ → X such that
α = γ◦β (cf. Definition 1.2). Indeed, in the cases (g, r) = (0, 4), (1, 1), since the hyperbolic
cores are of the same type, (0, 4)-curves and (1, 1)-curves provide “X”’s/“X ′”’s for each
other. Next, we consider the case (g, r) = (1, 2). If X → Y is the hyperbolic core of a
general curve X of type (1, 2), then let X ′ → Y be the covering of Y of degree 4 defined by
the permutations: (12)(34), (13)(24), (14)(23), (12)(34), (12)(34). (Here, one thinks of the
first four permutations as describing the ramification over the four points of Y c at which Y
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is not a scheme, and the last permutation as describing the ramification over the point at
infinity of Y .) Then consideration of the inertia groups at the various points of X ′ shows
that X → Y and X ′ → Y are linearly disjoint, so (Z def= X ×Y X ′ → X,Z → X ′) gives
the desired nontrivial correspondence. Finally, we consider the case (g, r) = (2, 0). In this
case, we take for X ′ → Y the covering of degree 4 defined by the permutations: (12)(34),
(13)(24), (14)(23), (12)(34), (13)(24), (14)(23). (Here, one thinks of these permutations
as describing the ramification over the six points of Y c at which Y is not a scheme.)
Then consideration of the inertia groups at the various points of X ′ shows that X → Y

and X ′ → Y are linearly disjoint, so (Z def= X ×Y X ′ → X,Z → X ′) gives the desired
nontrivial correspondence.

§6. Interpretation of a Theorem of Royden

Let (g, r) be a pair of nonnegative integers such that 2g − 2 + r > 0. let Mg,r denote
the moduli stack of r-pointed smooth (proper) curves of genus g. Here, the r marked points
are unordered. (Note that this differs slightly from the usual convention.) The complement
of the divisor of marked points of such a curve will be a hyperbolic curve of type (g, r).
Thus, we shall also refer (by slight abuse of terminology) to (Mg,r)k as the moduli stack
of (hyperbolic) curves of type (g, r).

Let us refer to as a correspondence on Mg,r an (ordered) pair of finite étale morphisms
α : E → Mg,r, β : E → Mg,r, where E is nonempty. We shall call a correspondence (α, β)
on Mg,r trivial if α = β. Note that this definition of what it means for a “correspondence
on a (single) object” to be trivial is a bit different from the definition (Definition 1.2) that
we gave earlier for what it means for a “correspondence from one object to another object”
to be trivial.

Then we have the following result (essentially a consequence of a theorem of Royden):

Theorem 6.1. Suppose that 2g − 2 + r ≥ 3. Then Mg,r is generically a scheme, and
moreover, does not admit any nontrivial automorphisms or correspondences.

Proof. Write T for the universal covering space of the analytic stack associated to the
algebraic stack Mg,r. Thus, T is what is usually referred to as “Teichmüller space.”
Let us write Aut(T ) for the group of holomorphic automorphisms of T , and Γ for the
fundamental group of the analytic stack associated to Mg,r. Thus, we have a natural
morphism Γ → Aut(T ). According to a theorem of Royden ([Gard], §9.2, p. 169, Theorem
2), this morphism is, in fact, an isomorphism (under the given hypotheses on (g, r)). The
injectivity of this morphism implies that Mg,r is generically a scheme; the surjectivity
of this morphism implies that Mg,r has no nontrivial automorphisms. Moreover, it is a
matter of well-known general nonsense (see, e.g., the discussion of [Marg], p. 337) that the
existence of a nontrivial correspondence on Mg,r would imply the existence of an element
of Aut(T ) − Γ such that Γ

⋂
(γ · Γ · γ−1) has finite index in Γ and in γ · Γ · γ−1. Thus, we
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see that there are no nontrivial correspondences on Mg,r . This completes the proof of the
result. ©

Remark: Note that the conclusion of the Theorem is false in the exceptional cases ruled
out in the hypothesis of the Theorem.
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